Preliminary communication

Organometallic conformational equilibria
XII. Racemization in derivatives of π-cyclopentadienylmolybdenum and π-indenylmolybdenum tricarbonyl dimers ${ }^{\star}$

J.W. FALLER, A.S. ANDERSON and A. JAKUBOWSKI
Department of Chemistry, Yale University, New Haven, Connecticut 06520 (U.S.A.)
(Received December 7th, 1970)

The coordination geometry about the molybdenum atom in π-indenyl-Mo(CO) ${ }_{2} \mathrm{LR}$ compounds can be conveniently described as a square pyramid with the indenyl moiety at the apex and the remaining ligands at the comers of a square base. The possible geometric arrangements of the L, R, and two carbonyl ligands about the corners of the square allows for one trans and two enantiomeric cis isomers. As with the cyciopentadienyl analogs ${ }^{1-4}$ these complexes undergo intramolecular rearrangements which interchange the ligands and thus provide pathways for interconversion of isomers. On the NMR time scale, two distinct processes, cis-trans isomerization and cis-cis racemization, may be observed.

Previous work ${ }^{1}$ has indicated that the most likely intermediate for rearrangement would resemble a trigonal bipyramid with one axial position occupied by the π-indenyl or π-cyclopentadienyl moiety and the other axial position occupied by one of the ligands. The goal of these studies is the determination of the relative bairier heights encountered by different ligands assuming the axial position. If either an R or L group occupies such a position a plane of symmetry exists in the intermediate. If, however, a carbonyl ligand is axial there is no plane of symmetry and thus the intermediate is chiral. The type of intermediate involved in rearrangement may be determined, therefore, from a study of the racemization pathway of the cis enantiomer. The intermediate with an axial carbonyl remains chiral and racemization via this intermediate must proceed by conversion to the achiral trans isomer. On the other hand, an intermediate with two equatorial carbonyls is achiral and thus provides a path for direct interconversion of one cis enantiomer. Although cis \rightarrow cis enantiomer interconversion in these compounds usually occurs through a pathway with a substantially lower barrier than that for the cis \rightarrow trans \rightarrow cis pathway, studies to be discussed here demonstrate that this is not always the case. For π-indenyl- $\mathrm{Mo}(\mathrm{CO})_{2} \mathrm{P}(\mathrm{OMe})_{3} \mathrm{I}$, the barriers for the two paths are of approximately the same height.

The PMR of the cis isomer of π-cyclopentadienyl-Mo(CO) ${ }_{2}\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{I}$ showed two methyl resonances, presumably diastereotopic due to a chiral center at the molybdenum atom, separated by 0.2 ppm . These resonances broaden and average before

[^0]any sipnificant exchange between cis and trans isomers is indicated by broadening of the resonances assigned to the trans isomer. This complex first led to the proposal that cis \rightarrow cis enantiomer interconversion occurred without intermediate formation of the trans isomer; hence, that the intermediate responsible for the interconversion did not contain an axial carbonyl. An investigation of the indenyl complexes was initiated to demonstrate that this averaging is truly due to cis-cis enantiomer interconversion rather than hindered rotation about the Mo-P bond or inversion at the phosphorus atom.

Although one anticipates that the indenyl moiety would have a plane of symmetry, the chiral center at the molybdenum atom in the cis isomer makes the "equivalent" protons diasterectopic and ail seven protons nonequivalent. This is most evident in the cyclopentadienyl portion of the indenyl ligand, e.g., there is a 0.6 ppm chemical shift difference between the 1 and 3 protons in $\pi-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}^{\star}$ as seen in Table 1.

Upon raising the temperature the 1 and 3 protons average at the same rate as do the nonequivalent methyl groups, at $\delta 1.70(J=8.3 \mathrm{~Hz})$ and $\delta 1.6(J=9.1 \mathrm{~Hz})$ of the dimethylphenylphosphine ligand. This provides strong evidence that the nonequivalence of the methyl groups $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ arises from the chirality of the molecule rather than hindered rotation about the Mo-P bond in cis isomers of either π-indenyl or π-cyclopentadienyl complexes.

Further evidence that the process responsible for averaging of the methyl resonances of $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ ligands in cis- $\pi-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{LR}$ (and $\left.\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{LR}\right)$ does not involve an inversion at the phosphorus atom is found in the PMR spectrum of $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeCOP}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$. Only inversion of configuration at the iron atom or inversion of the phosphine ligand itself could average the methyl environments. Since no averaging of the methyl resonances in the PMR spectrum is observed at temperatures up to 190°, where decomposition is too rapid for observation of a spectrum, no inversion has occurred. If no inversion of the phosphorus ligand occurs in the iron compound, it is unlikely that it is occurring in the molybdenum compounds at a much lower temperature.

Previous work ${ }^{1}$ demonstrated that the barriers to rearrangement processes in these stereochemically nonrigid molecules may be reliably calculated from the Eyring equation, $k=k_{\mathrm{B}} T / h \exp \left(-\Delta F^{*} / R T\right) . \Delta F^{*}$ for $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{LR}$ has been calculated by averaging a minimum of three rates taken at three temperatures (see Tables 2 and 3). Since ΔS^{*} is very small in all cases, ΔF^{*} varies by less than $0.5 \mathrm{kcal} /$ mole over a temperature range of 100 degrees.

Comparison of thermodynamic data indicates that the cis isomer is generally more favored in the indenyl compound than in the corresponding cyclopentadienyl analog. There are not sufficient data at this time to warrant generalizations about comparisons of kinetics because cis-cis barriers could not be measured in most of the cyclopentadienyl complexes. Of particular interest, however, is the observation that the free energy of activation of the $c i s \rightarrow$ cis interconversion depends markedly on the halide, whereas the cis \rightarrow trans barriers are relatively independent of the halide. This is illustrated for the Cl, Br, and I derivatives of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ in Table 2. The increasing values of ΔF^{*} with $\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$ reflects the importance of steric factors in determining relative barrier heights.

[^1]TABLE 1
PROPERTIES OF SOME INDENYLMOLYBDENUM COMPLEXES

$\mathrm{C}_{\mathrm{L}} \mathrm{H}_{7} \mathrm{MO}(\mathrm{CO})_{2} \mathrm{LI}^{a}$		$>$				$\begin{aligned} & \Delta F^{*} c \rightarrow c \\ & \left(\mathrm{kcal} / \text { mole }\left({ }^{\circ} \mathrm{C}\right)\right) \end{aligned}$	$\begin{aligned} & \Delta F^{*} c \rightarrow b^{b} \\ & \left(\mathrm{kcal} / \mathrm{mole}\left({ }^{\circ} \mathrm{C}\right)\right)^{\prime} \end{aligned}$	$K_{\mathrm{eq}} \equiv \frac{[c i s]^{c}}{[\text { trans }]}$
	δ_{1}	δ_{3}	δ_{2}	$\delta_{4,5,6,7}$	J_{12}			
$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	5.77	5.14	4.84	~ 7.4	3.0	21.3 (110)	23.4 (110)	7.5
SbPh_{3}	5.93	5.46	4.88	~ 7.4	3.0	21.0 (110)	--	
$\mathrm{PPh}_{3} f$	5.84	5.15	4.86	~ 7.4	3.0	23.2 (130)	-	
$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3} f$	~ 5.6 d	~ 5.6 d	4.91	~ 7.4	2.9	20.6 d,e (100)	20.4 (100)	0.79

[^2]TABLE 2
PROPERTIES OF SOME π-CYCLOPENTADIENYLMOLYBDENUM COMPLEXES

$\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{LR}$		$\begin{aligned} & v(\mathrm{CO})\left(\mathrm{cm}^{-1}\right) \\ & \left(\mathrm{in}_{6} \mathrm{H}_{12}\right) \end{aligned}$	$\begin{aligned} & K_{\text {eq }} \equiv \frac{[c i s]}{[\text { trans }]} \\ & \left(\text { in } \mathrm{CDCl}_{3} \text { at } 31^{\circ}\right) \end{aligned}$	$\begin{aligned} & \Delta F^{\dagger} c \rightarrow c^{a} \\ & \left(\mathrm{kcal} / \operatorname{mole}\left({ }^{\circ} \mathrm{C}\right)\right) \end{aligned}$	$\begin{aligned} & \Delta F^{*} C \rightarrow t \\ & \left(\mathrm{kcal} / \text { mole }\left({ }^{\circ} \mathrm{C}\right)\right) \end{aligned}$
R	L				
H	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1951, 1941, 1865	0.92	-	13.6 (25)
Cl	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1983, 1886	31	18.9 (65)	
Br	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1981, 1888	8.2	20.1 (90)	25.8 (160)
1	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1976, 1889	4.7	21.6 (110)	25.4 (160)
CH_{3}	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1949, 1941, 1860	0.17	19.9 (90)	20.7 (100)
H	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1968, 1895	7.5	12.1 (-50)	13.9 (-20)
Cl	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1989, 1907	14	18.2 (50)	23.4 (120)
Br	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1988, 1906	6.2	19.3 (70)	23.7 (120)
1	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1984, 1913, 1907	1.1	20.7 (90)	23.2 (120)
CH_{3}	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1958, 1882	0.26	19.5 (80)	19.7 (80)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	1953, 1877	0.08		

[^3]TABLE 3
PMR DATA FOR SOME π-CYCLOPENTADIENYLMOLYBDENUM COMPLEXES

$\pi \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{LR}$		$\begin{aligned} & \operatorname{trans}-\pi-\mathrm{C}_{5} \mathrm{H}_{5} \\ & \delta(J(\mathrm{PH})) a \end{aligned}$	$\begin{aligned} & c i s-\pi-\mathrm{C}_{5} \mathrm{H}_{5} \\ & \delta(J(\mathrm{PH})) \end{aligned}$	trans L-methyl $\delta(J(\mathrm{PH}))$	cis L-methyl $\delta(J(\mathrm{PH}))$	$\begin{aligned} & \operatorname{trans} \mathrm{R} \\ & \delta(J(\mathrm{PH})) \end{aligned}$	$\begin{aligned} & \operatorname{cis} \mathrm{R} \\ & \delta(J(\mathrm{PH})) \end{aligned}$
R	L						
H	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	4.98 (1.0)	$5.22(<0.3)$	1.82 (8.8)	1.77 (9.0) ${ }^{b}$	-6.06 (23.3)	-6.15 (65.6)
Cl	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	4.99 (2.4)	5.33 (0.5)	(8.8)	1.85 (9.7), 1.81 (9.4)	-	-
Br	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	4.98 (2.3)	5.31 (0.5)	1.94 (8.9)	1.97 (9.0), 1.94 (8.7)	-	-
I	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	5.03 (2.3)	5.29 (0.5)	1.93 (9.1)	2.10 (8.9), 2.06 (8.7)	\cdots	- 18 (11.8)
CH_{3}	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	4.71 (1.4)	5.08 (<0.3)	1.82 (8.5)	1.68 (8.2), 1.65 (8.0)	0.30 (2.8)	-0.18 (11.8)
H	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	5.04 (0.9)	5.22 (<0.2)	3.59 (12.7)	3.54 (13.6), 3.42 (11.7)	-6.10(23.4)	-6.49 (63.2)
Cl	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	5.09 (2.3)	5.33 (<0.2)	3.73 (12.6)	3.68 (13.5), 3.60 (11.5)	- .	. -
Br	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	5.09 (2.4)	$5.32(<0.2)$	3.74 (12.6)	3.66 (13.7), 3.58 (11.8)	-	-
I	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	5.08 (2.3)	$5.30(<0.2)$	3.76 (12.1)	3.62 (13.0), 3.55 (11.7)		-
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	4.69 (1.6)	4.90 (<0.2)	3.53 (11.9)		$2.78(2.9){ }^{\text {c }}$	
CH_{3}	$\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	4.84 (1.6)	5.05 (<0.2)	3.62 (12.5)	3.46 (13.0), 3.42 (11.8)	0.32 (3.0)	-0.21 (11.6)

[^4]These results corroborate our previous proposal that steric factors are important in determining both thermodynamic and kinetic parameters and, at least for the cyclopentadienyl complexes, cis \rightarrow cis occurs more readily than cis \rightarrow trans interconversion. There is a delicate balance of interactions, as indicated by the indenyl complexes, which suggest that by sufficient modification of structure the preferred route of racemization can be altered. Nevertheless, the direct cis \rightarrow cis mode of racemization is dominant in the cyclopentadienyl complexes and on the basis of our model ${ }^{1}$, this rearrangement should occur by the movement of R or L rather than a carbonyl to the apical position in the intermediate. We are currently carrying our experiments with labeled ${ }^{13} \mathrm{CO}$ derivatives in order to further elucidate the pathways involved.

ACKNOWLEDGEMENTS

This research was supported in part by the Connecticut Research Commission, the Petroleum Research Fund administered by the American Chemical Society, and the Alfred P. Sloan Foundation. Grant No. GP-6938 of the National Science Foundation provided funds for the Varian HA-100 spectrometer which was used in portions of this work.

REFERENCES

1 J.W. Faller and A.S. Anderson, J. Amer. Chem. Soc., 92 (1970) 5852.
2 J.W. Faller and A.S. Anderson, J. Amer. Chem. Soc., 91 (1969) 1550.
3 J.W, Faller, A.S. Anderson and C.C. Chen, J. Organometal. Chem, 17 (1969) 7.
4 J.W. Faller, A.S. Anderson and C.C. Chen, Chem Commun, (1969) 719.
5 A.J. Hart-Davis, C. White and R.I. Mawby, Inorg. Chim. Acta, 4 (1970) 431.
J. Organometal Chem, 27 (1971) C47-C52

[^0]: ${ }^{\star}$ For part XI see ref. 1 .

[^1]: It is assumed that rotation of the indenyl fragment relative to the Mo-containing moiety is rapid on the NMR time scale.

[^2]: ${ }^{a}$ Cis isomer at 31° in o-dichlorobenzene. ${ }^{b}$ Calculated from Eyring equation from rates obtained within $\pm 10^{\circ}$ of reported temperature. ${ }^{c}$ In o-dichlorobenzene at $+31^{\circ}$. Resonances 1 and 3 appear under the corresponding resonances of trans isomer so that $\Delta F^{*} c \rightarrow c$ may not be measured in o-dichlorobenzene. ${ }^{e}$ In CHBr_{3} resonances of cis and trans isomers are not superposed. f These complexes were prepared concurrently by other workers ${ }^{5}$; however, no trans isomers nor rearrangements were observed.

[^3]: ${ }^{a}$ Calculated from $k=k \mathrm{~B} T / h \exp \left(-\Delta F^{*} / R T\right)$ using three sates within a $\pm 10^{\circ}$ range of the indicated temperature and averaging the values of ΔF^{*}. Values of ΔF^{*} are reproducible to better than $0.2 \mathrm{kcal} /$ mole: this error is greater than that introduced in assuming that $\Delta F^{*}=\Delta H^{*}-T \Delta S^{*} \cong \Delta H^{*}$. Previous studies ${ }^{1}$ indicate that ΔS^{*} is small causing changes of less than $0.1 \mathrm{kcal} /$ mole over a 20° range.

[^4]: All chemical shifts are given in ppm downfield from TMS; coupling constants are given in hertz. NMR spectra were measured at 31 in deuteriochloroform at 100 MHz except for the species $\mathrm{R}=\mathrm{H}, \mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (determined at -50) and $\mathrm{R}=\mathrm{H}, \mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (determined at -65 in $\mathrm{Cl}_{2} \mathrm{CHF}$), b Although these methyl groups appear accidentally equivalent in this solvent, separate resonances may be observed in a mixture of toluene/dichlorofluoromethane at -75^{8}. c Only methylene resonances are reported for $\mathrm{R}=$ substituted methyl.

